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1. Introduction

Hugo Wahlquist and I first met Jerzy Plebaniski in 1967 in New York during the
second Texas Conference, We remember still his (second) question to us: "Tell me,
how did you guys get the disease?)’ Fascination with the physics and mathematics
of general relativity isindeed a disease, a chronic affair, with which many of us feel
privileged to have been afilicted. | am so very pleased to be at this symposium, to
honor Professor Plebanski’s life of contributions and associations in our wonderful
field, and to join with his colleagues and students in wishing him a most Happy
Birthday.

I will discuss two problems of immersion, of (curved) Riemannian or pseudo-
Riemannian manifolds seen as submanifolds of higher dimensional flat manifolds
(Euclidean or pseudo-Euclidean.) The first is classic, that of two-dimensional
spaces of constant negative curvature, immersed in ordinary Euclidean 3-space;
by introducing intrinsic coordinates, arising from the immersion itself, the sine-
Gordon equation and original transformation of Béacklund are fount{. The second
problem will be that of Ricci-flat 4-spaces, which are well known to be, locally at
least, immersible in flat Euclidean spaces of ten dimensions. We will find the par-
tial differential equations of both these immersions to explicitly show their causal
property--the uniqueness of their integration from Cauchy-Kowaleski data set on
one dimensional and three dimensional slices, respectively.

The partial differential equations of Riemannian immersion are invariantly for-
mulated as exterior differential systems set on the orthogonal frame bundle over
the immersing space. Since in these cases the immersing spaces arc ‘flat, three and
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ten dimensional, respectively, the bundles are in fact group spaces, 1S0(3) and

1S0( 10). 1S0(3) is six dimensional, the group of translations and rotations of flat
3-space Fj. 1S0( 10) is 55 dimensional, the group of translations (10) and rotations
(45) of E;g. The Cartan-Maurer structure equations of ISO(n) invariantly express
its Lie algebraic structure in terms of n left (right )-invariant basis I-forms w* and
n(n-1)/2 basis I-forms w#(= —wj in thecase of positive definite signature):

dw' + Wt Aw’ =0

dwh 4+ wh Awy =0 (1)

We will use this basis to set the differential ideals determining the immersions.

2. Cartan-Kahler Theory

Cartan-Kahler theory of (recal, analytic) sets of partial differential equations
considers closed exterior differential ideals on spaces of combined dependent and
independent variables, dimension n. The generic maximal integral manifolds of
an ideal--submanifolds on which, when pulled back, the ideal vanishes--- are the
solutions. If these are g-dimensional, any g basis 1- forms which, pulled back or
restricted to them, still remain linearly independent can be chosen as giving suitable
independent variables; the n-g others then are denoted as dependent, satisfying the
associated partial differential equations. We have briefly summarized C-K theory

in several papers!

; a recent excellent monograph by Yang®is highly recommended.
Several diagnostic tests and techniquesthere described and justified will be of es-
sential use in the following.

First, given an exterior differentialideal I, it is important to recognize its
Cauchy characteristic vectors— vector fields which, when contracted with any form
in | yield, again, a form in I. Their importance stems from the observation that all
of them must lie in the maximal integral manifolds (otherwise an integral manifold
of larger dimensionality could immediately be constructed!) Cauchy characteristic
vectors thus give integral manifolds a fiber structure. The second essential diagnos-
tic calculation is to find the set of Cartan (integer) characters s = {so,$1,....Sg-1}.
These are in principal found from the ranks of a nested sequence of linear homo-
geneous algebraic equations for the components of a set of vectors V,, V,, . ... .. Vq
that, from a generic point, can be integrated to span the integral manifold that is
a g- dimensional solution. The genus g is in fact determined from the criteria that
S0+ 81 + . + 841 < n— g while no further independent vector V4, exists. If the
equality holds there are no arbitrary functions in the final construction---a well-set




Cauchy-Kowaleskiintegration-—of a g-dimensional solution from a submanifold of

lower dimension on which initial data are set, The last non-zero integer in the set
s gives that dimension, and the number of initial data as functions on it. In the
cases reported below the integers s have been calculated by Hugo Wahlquist using
a Monte Carlo program to explore the ranks of the nested, and so interrelated, sets
of ostensibly linear algebraic equations posed by Cartan’stheory’. This method of
finding s seems to be essential, as we must work in a large number of dimensions,
and moreover there are 3-forms and 4-forms in the ideals. An explicit example is
given in the Appendix.

The technique of prolongationleads to deep analyses of the algebraic struc-
tures underlying a set of partial differential equations, and to discovery of intrinsic,
or adapted, coordinates. Roughly, prolongation is the addition of new forms to
an ideal, and the simultaneous consistent introduction of new variables. Cartan
used the term prolongation to mean introduction of higher partial derivatives-
jet variables- -together with the equations relating them. We have used it also to
mean systematic introduction of non-local variables—-loosely, potentials and pseudo-
potent ials--— and shown how this can lead to discovery of inverse scattering solutions,
Backlund transforms and (if the ideal | contains only I-forms and 2-forms) other
solution methods based on Kit-Moody algebras. Prolongation also bringsin the
possibility of generalized invariance generators of the partial differential equations
(or, as we have called them, isovectors of theideals). This is all admirably discussed
by Dan Finley and J. K. Mclver in a paper now in press’.

3. ldeals for Surfaces Immersed in £E;

The construction shown in Figure 1. illustrates and explains the “method of
moving frames” approach to the classic surface immersion problem that is found
in many elementary differential geometry texts, Changing notation to accord with

these, we first rewrite the structure equations (1) for 1S(1(3), p, v = 1,2,3, setting

wl, w2, wd — 91,92,93 and w%,wﬁ,w? — w3,wl,w2;

o' — WA+ WEAG =0
d* —w' A+ WP Al =0
do® — WA W A0 =0
dw' + WP Aw? =0
dw? + Wi AW =0
dw?+w! Aur = O 2)




The immersion of a 2-surface is described by annulling a single I-form 6°and

its closure, d@3; that is, we set theideal I on 1S0(3) generated by

93
WA —wIAG (3)

One intuitively thinks of orienting a moving orthogonal frame, or triad, at each
point of the 2-surface, so that two frame vectors lie in the surface. This intuition
is borne out by Cartan diagnostics of I: there is one Cauchy characteristic vector
(dual to w®, which dots not appear in 1), andn = 6,5 = {1,1, 1}, g = 3. A solution
of 1 is thus a 3-dimensional sub-bundle of 1S0(3) with I-dimensional fibers over a
2-dimensional base. From the structure equations, it is immediately seen that this
solution is an orthogonal frame bundle over two dimensions, with curvature 2-form
R} = —2w} Awd = 2w! Aw? . A cross.sectipn of it is a particular orthogonal frame
field, or (anholonomic)metric connection. According to the Cartan characters, each
such bundle can be constructed by Cauchy-Kowaleski integration after giving one
arbitrary function of position on a suitable 2-surface.

0(2) bundle
( )dim 3 > 'Sd?rﬁé
Y Y
M » Ej
dim 2 dim3

Figure 1. : Surfaces M immersed in E3 have orthogonal frame bundles over them
that are sub-bundles of 1S0(3).




The diagnostic alters dramatically if we specialize to surfaces of constant neg-
ative Gaussian curvature. We now consider the (closed) ideal I' generated by

*3
WA —wWEAS
w'Aw? 4 01 A2 (4)

Now we findn=6,s= {1, 2,0}, g=3, $2= O! (This reduction of s2 does not
happen if we specialize to other classes of surfaces, e.g. constant positive curva-
ture!) These constant curvature orthogonal frame bunches are uniquely constructed
aft er giving two arbitrary funct icms cm a one dimensional submanifold (which must
itself only annul 6*). This can be called the discovery of a causal slicing of the
2- dimensional Riemannian geometry. Mathematically it allows us to go on and

specialize to adapted cross sections~— adapted frames-. by systematically searching
for I-forms ¢ such that d¢ = O, mod (1, {). Adding in such a I-form will ouly
change so. In the present case two solutions exist; we use the same one as Chern
and Terng’, to “kill off the s2= O while still leaving a well-set ideal. That is, we
finally consider an augmented ideal 1“ generated by

93

W3 + cotT wr + csc T 62

WA — Al
w' Aw? + 0" A2, (5)

where 7 is an arbitrary constant. Now n=6, s = {2, 2}, g =2.

We now can use both kinds of prolongation to find adapted coordinates. First,
remember Cartan’s Lemma, that if a set of I-forms w? satisfy w® A w'= O with
the w' independent, then we may set w? - ¢fw? = O, thereby introducing scalar
fields d)?j that must be symmetric on : and 7. In the present case applying it to the
2-form in 1% requiring 6! ancl 6% to be independent, introduces three scalars which
the second 2-form in 1 (for constant negative curvature) reduces to two. We get

- 2
w1+f ggl ! 92
f+g f+g
I fn —
Wty Mg I 9 (6)

f+g f+- g

Adding these to the ideal I“ means we can drop the original two 2-forms, but at
the price of adding inn, for closure, the exterior derivatives of (6) (which simply




follow from the structure relations). The last step is then to search for non-local

prolongations, in this case just conservation laws, by setting, e.g.,

o . Aw' 4 Bw? 4 Co' + DE? (7)
with the coefficients functions of f and g, such that do = O, mod I“. Solutions
indeed are found: -

d{/1+ 2 (6" + ')}
d{y/1 =g (6" —w)} (8)

so we introduce “potential functions”, new scalar fields-—coordinates-- x and t by
setting

V14 f2 (0" 4+ w') = do - dt

V14 g% (6" —w') = dz + dt (9)
One can then solve for all the original basis forms, w], w*, W°, 91,92, explicitly in
terms of the scalar coordinates f, g,x and t and their differentials. The partial
differential equations that result from distinguishing f and g as dependent and x
and t as independent variables, inthe structure 2-forin equations, are the famous

pair of reciprocal sine-Gordon equations originally found by Backlund by laborious
threec dimensional geometrical construction:

ai“gﬂ)__ — asin(a — )
T
-?L‘."gftﬂ. = oV sin(a 4 9) (10)

where

a=Cos 7 —cot r
f = tan(y + «)
g = tan(y) — «) (11)

4. Ricci-flat Four Spaces Immersed in £io

We begin by dividing the basis forms in Eq. (1) into two sets, t,J., etc. =
1,2,34 and A, B,etc. = 5,6,7,S, 9, 10. The structure equations then become

dwi+wi.Awk %—w;/\wA =0

dw? +w§ Awb —}»wf\ Aw' =0

dzu;--‘rwi./\wf + wf\/\w;.\ =0 Gauss
dwdl + W AWk + WA AL =0 Ricci
dwf\ + w;;. A wﬁ + wé; A wf{ =0 Codazzi (12)




where we have indicated the famous names conventionally applied when these are

pulled back to an immersed 4-manifold. The immersion is determined by the closccl
exterior differential ideal I:

wA

whAw (13)

There are 21Cauchy characteristic vectors (since w} and wf are not explicitly
in 1), and s is calculated to be {6,6,6,6,6, O...}, n=255,¢g = 25. We have 25
dumensional solutions, each a sub-bundle of 21 dimensional 0(4)@ O(6) fibers over
a 4-dimensional base.

A cross section of this so-called “Darboux “ bundle yields not only an orthog-
onal frame field on 4-space, but also 15 auxiliary O(6) fields that arise from the
immersion, These auxiliary O(6) fields (or 0(5, 1), 0(4, 2) or 0(3, 3); wc have not
had to be specific about signature) may prove to be as useful as those introduced
in other formulations, for example, by complexifying orthogonal frame bundles. In
terms of them, the Riemann tensor induced on the integral manifolds is quadratic.
It may be significant that 0(4,2) is isomorphic to the conformal group CO(3, 1),
and occurs in twistor analyses. Only in our first example, two dimensions immersed
in three, did the Darboux bundle structure degenerate to that of an O(2) frame
bundle, without auxiliary fields.

The most gratifying discovery Wahlquist and I have made is that, when we go
on to consider Rice.i-flat and related geometries, Cartan character analysis shows
the Darboux bundles to be “causally” determined from data on slices of lower
dimension, here three. While this Cauchy property for general relativity is of course
well known since work by Lichnerowicz, Choquet-Bruhat and ADM, here it emerges
very elegantly and naturally, giving us conviction that the Darboux variables are
especially well adapted to the algebraic structure of the field equations.

The Riemann curvat ure 2-forms can be read off from the Gauss struct ure equa-
tions in Eq.(12)

T 1 A
Ry = - 2wy A wj (14)

The Ricci tensor is coded in the 3-forms R; A w* €5k The immersion ideal I' for
Ricci-flat 4-geometries is

wA

wh AW

wh Awl AWk e (15)




Cartan diagnostics of I’ gives s = {6,6, 10,8, O...}, so solutions are determined
by setting 8 functions onthree dimensional slices. This is shownin Figure 2.
Each such construction, of a bundle with 21 dimensional fibers over 4-space, is
simultaneously 22 dimensions over three. Causality emerges together with an au-
tonomous time variable. Similar analyses yield this causal structure for immersions
of Einstein-Maxwell and Einstein-Klein-Gordon solutions, and for Ricci-flat three
and five dimensional geometries (immersed in six and fifteen dimensional flat spaces,

respectively?).

N — — — =0(4)®0(6) bundle 15_0(10)
dim3 dim 25 dim 55
\
\
\
\
\ 0(4)®(6) fiber
\ dim 21
\
\
\
\
\
\
\
\
\Y Y
M - E10
dim 4 dim 10

Figure 2. : Riemannian 4-geometries M immersed in F10 have Darboux frame
bundles 0(4)@ 0(6) over them that are sub-bundles of 1S0( 10). In the Ricci-flat
case a C-K construction additionally gives M the structure of an 0( 1) or line bundle
over three dimensions (dashed arrows).

We are making progress in finding augmented ideals, with specialized frames,
in a program analogous to that of Section 3 leading to adapted coordinates and
the sine-Gordon equation. A first step has been to incorporate maximal slicing,a
technique well known in numerical relativity. This proves to be nicely compatible
with the causal structure already present. That is, we have recently analyzed the




ideal 1 generated by

wA

Wt A w

:
wj\ /\wf‘; /\wk €ijkl
(wi Aw! + w2 AWE 4 W AwW?) Aw! (2=0)
wj/\wf/\wl/\w? %—w}/\wg/\wl /\w3—Hu‘f/\o.)‘i’/\wr"/\w3
(WIAW AP+ A AW F WAL AW AW (©6=0) (16)

and find that S,remains zero: s = {6,6,11,10,0,... },¢9 = 22. This appears to be a
neat demonstration of the (local) existence and uniqueness of maximal slicing. We
110W have 0(3) &) O(6)bundles over 4- space. Further specialization of the framing,
and use of prolongation may yield explicit, adapted, variables and coordinates.
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Appendix

Monte Carlo calculation of Cartan characters:
using the maximal-slicing, Ricci-flat ideal as an example

Hugo D. Wahlquist

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109, USA

The computation of Cartan characters used throughout this work follows very
closely the exposition given in Estabrook and Wahlquist!. Here we describe the
numerical method and display some typical results obtained for the maximal slicing
ideal, Eq. (16).

The 55 basis I-forms of 1S0(10), {w*,w*}, (p, v = 1,..., 10), are re-labeled
into a I-dimensional array, bx‘(i =1,....55), denoted Bz in the computer printout,
Figure 3. The ordering of the basis forms is arbitrary, but can be (and here has

been) chosen so as to optimize the computations. The set of forms for any of these
immersion ideals can then be written uniformly as

1 ~forms : aA:fi"bi A=1,..,N

2 — forms : A8 = fgbi Al B=1,.,N,

3 - forms : ¥ = £S5 0P AW A C=1,.,N;

etc. A(1)
where the coefficients f of every form are small integers. The ideal in Eq. ( 16)
translates to the set of forms in Figure 4. The set of vectors spanning an integral
element of the solution manifold is expressed as Vy = vfgbi where the subscript X
labels the vectors in the set and b; are the dual basis vectors satisfying bi] b7 = &7.
Many such sets can be found at a point, andin principle, each would lead to a
locally analytic solution manifold by Cauchy-Kowaleski integrations. We are here
interested only in generic solutions for which the basis formsw# (g = 1,.2,3,4) of
an immersed 4-space remain linearly independent. Consequently we demand that
the first four vectors of a set must span (be non-degenerate on) this sub-space. If
the ideal of forms allows such a set, the ideal is said by Cartan to be “involuntary”
with respect to these w*.
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‘MAXIMAL’ BASIS 1 -FORMS

B1=w5 B21 = w(3,7) 641 = W(5,10)
62 = w6 B22 = W(3,8) B42 = W(5,7)
B3 = w? B23 = W(3,9) B43 = W(6,8)
B4 = w8 B24 = W(3,10) B44 = W(6,9)
BS=w9 B2S = W(4,5) 645 = W(6,10)
B6=W10 B26 = W(4,6) B46 = W(7,8)
67 = W(1,5) B27 = W(4,7) B47 = W(7,9)
B8 = W(1,6) BZ28 = W(4,8) 648 = W(7,10)
69= W(1,7) 629 = W(4,9) B49 = W(8,9)
B10 = W(1,8) 630 = W(4,10) B50 = w(8,10)
B11 = W(1,9) 631 = W(1,4) BS1 = w(9,10)
612 = W(1,10) 632 = W(2,4) 652 = w4

613 =W(2,5) 633 = W(3,4) BS3=w3

B14 = W(2,6) B34 = W(1,2) 654 = w2
B1s=W(2,7) B35S = W(1,3) B55 = w1

616 = W(2,8) 636 = W(2,3)

B17 = W(2,9) 637 = W(5,6)

B18 = W(2,10) 638 = W(5,7)

B19 = W(3,5) 639 = W(5,8)

620 = W(3,6) 640 = W(5,9)

Figure 3. :Labels of basis forms for the ideal Mazimal.

A are initially ranked to determine the first Cartan character So,

The I-forms «
giving the number of independent I-forms. If the o as given are independent, then
so = N1. All ranking is accomplished by straightforward Gaussian elimination, so
after ranking, the coefficient matrix f{‘ acquires upper triangular form; i.e., f,-A =0
for i < A. The actual calculations Proceed using integer arithmetic to avoid any
possible problems with numerical precision. The price paid for this is the rapid
growth in the magnitudes of vector components, especially in large ideals including
higher degree forms. The growth is minimized as far as possible by continually
reducing over common factors, but this does not eliminate the problem for ideals
as large as the maximal slicing ‘ideal, even with 32-bit integers. The calculations
often exceed this limit before a complete solution is reached. Having to repeat the
calculation anew when this happens is not serious, however. Since each solution
requires only a few seconds on a desktop computer, hundreds of complete solutions

actually can be obtained in a couple of hours.
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THIS IS THE IDEAL: ‘MAXIMAL’

THE DIMENSION IS 55 .

THERE ARE 6 I-FORMS IN THE IDEAL:

# 1 = +B1
#2 s +B2
# 3 = +B3
# 4 = +84
# 5 = +8B5
# 6 = +86
THERE ARE 6 2-FORMS IN THE IDEAL:

#1 =+ B7AB55 +B13AB54+B19AB53 + B25ABS2
# 2 = + BBABSS + B14ABS4 + B20AB53 + B26ABS2
# 3 = + B9ABSS + B15ABS4 + B21ABS3 + B27AB52
# 4 = + BIOAB55 +B16AB54 + B22AB53 + B28ABS2
# 5 =+ B11ABSS + B17AB54 + B23ABS3 + B29ABS2
# 6 = +B12AB55+ B18AB54+ B24AB53+B30AB52
THERE ARE 5 3-FORMS IN THE IDEAL:

# 1 = +B7AB13AB53 + B13AB19ABSS + B19AB7ABS4 + B8AB14AB53 + B14AB20ABSS + B20AB8ABS4
+BIABI5ABS3 + B15AB21 ABSS + B21 AB9ABS4 + BIOAB16AB53 + B16AB22AB55 + 822AB104854
+B1IAB17AB53 + 617AB23AB55 +B23AB11AB54 + B12AB18AB53 + B18AB24ABSS + B24AB12AB54
# 2 = +B7AB13ABS52 + B13AB25AB5S + B2SAB7AB54 + B8AB14AB52 + B14AB26ABSS5 + B26AB8ABS54
+ BOAB15AB52 + B15AB27AB55 + B27AB9ABS4 + B10AB16ABS52 + B16A&@BS55 + B28AB10ABS4
+B11AB17AB52 + 617AB29AB.55 + B29AB11AB54 + B12AB18ABS2 + B18AB304ABSS5 + B30AB12ABS4
# 3 = +B7AB19ABS2 + B192B25ABSS + B25AB7ABS3 + B8AB20ABS2 + B20AB26ABSS + B26AB8ABS3
+B9AB21AB52 + B21 AB27ABSS + B27ABIABS3 + B1OAB22AB52 + B22AB28ABSS + B28.AB10AB53
+B11AB23AB52 + B23AB29AB55 + B29AB11 AB53 + B12AB24AB52 + B24AB30AB55 +B30AB12AB53

# 4 =+ B13AB19ABS2 + B19AB25/B54 + B25AB13AB53 + B14AB20A852 + B20AB26AB54 + B26AB14AB53
+B15AB21 AB52 + B21AB274B54 + B27AB15AB53 + B16AB22AB52 + B22AB28AB54 + B28AB16AB53
+B17AB23AB52 + B23AB297B54 + B29AB17AB53 + B18AB24AB52 + B24AB30ABS4 + B30AB18AB53
# 5 = + B31ABS5ABS52 + B32AB54ABS2 + B33ABS34BS52
THERE ARE 2 4-FORMS IN THE IDEAL:

# 1 = +B31ABS4ABS3ABSZ - B32ABS5AB534BS2 + B33AB55AB54ABS2
# 2 = +B31AB32AB554854 + B31AB33AB55A853 + B32AB33AB54AB53

THERE ARE O 5-FORMS IN THE IDEAL:

Figure 4. : The ideal Mazimal entered in the Monte Carlo program.
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A first auxiliary vector Vi = vib;isinitially introduced with v} being a set of
randomly chosen (small!) integers. To be an integral element, some components of

Vi must then beadjustedto annul the I-forms o

Vije? =vift =0  (A=1,..,s0), A(2)

aset of equations which is easily solved in reverse order taking advantage of the
triangular structure of f{". Any components of VI which are not solved for retain
their randomly assigned values. A new set of I-forms a{' is now generated by
contracting V;jon the 2-forms 8
B _ B i B 1
[ I— V]Jﬂ = ’U;f[ l)'] A(B)

ig]”

Here brackets around indices denote complete antisymmetrization, but. without the
usual 1/n! factor. The full set of 1 -forms {a, «f } is now ranked to determine the
second Cartan character (rank =sgp+ s7).

A second auxiliary vector V,, again taken with initially random integer com-
ponents (except only for requiring linear independence from Vi), must annul the

augmented set of I-forms
Volat = i fft =0, Va)af = v%v{f[f;] =0 A(4)

which ensures that Vzis a 1-dimensional integral element and Vi and V2 together
span a 2-dimensional integral element. Again, after solving these equations any
components of V2 unconstrained by the equations retain their random integer values.

Now V,is used to generat e new I-forms from the 2-forms
af =V, ]BY = vy 0 A(5)
and Vi am1 V, are jointly applied tothe 3-forms to generate
C C i C ok
ayy = Vo [Vi|y™ = U%v;f[ijk]b : A(6)
This entire set of I-forms, a?,af, af, af, is ranked to determine sy(rank = so +
S] + 32).
Proceeding in this way, each new initially random (but independent) auxiliary
vector is required to annul all prior I-forms and then contracted, together with all
possible combinations of prior vectors, on the higher degree forms to generate new

I-forms which are then ranked. Finally, at some point no additional independent
I-forms will be obtained with, say, the k" auxiliary vector Vi, so siy= O and
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furthermore, all =0 (I > k). If k<g=n - Efz_; s, the ideal is well-set and

there are at least (g — k) Cauchy characteristics.

Clearly, the random values of unconstrained components of the auxiliary vec-
tors may lead to accidental degeneracy of the 1-forms generated from them at any
step, so that the rank of the I-forms is not maximal. Such accidents, however, are
relatively rare and are easily detected by repeating the solution several times; the
maximal characters generally become readily apparent after a few repetitions. As
mentioned before, repetitive solutions can be quickly accomplished.

The results of a short series of 8 solutions for the Cartan characters of the
maximal slicing ideal are presented in Figure 5., and Figure 6. shows some of
the corresponding sets of auxiliary vectors, which were carried through Vs. Here
k=4 ie., s4 =0, and g =55 — 33 =22. Accordingly, the vector V,is completely
determined by the first three auxiliary vectors, and the vectors Vs and V are Cauchy
characteristics, of which there are 1S in all (note that the basis forms, B34 - B51,
do not appear in the ideal).

‘MAXIMAL' RESULTS

QM is approximately the largest integer encountered during a solution attempt.

IV is the number of involutory vectors ( if a desired number was specified at the start ).
1QM = 5123392

S{G 911i1olorolov} V-6
2 QM = 1.50427200

S={6,6,11,10,0,0,0 ;} IV= 6
3QM:4822910

s-{6,6,11, 10 ,0,0,0,} V=6
4 QM = 78791376
S={6,6,1,10,0,0,0 } V=6
5 QM :628955225

s={6,6, 11,1 O, O, O, 0,} V=26
6 QM = 45630

s-{6,6,11,10, 0,0, O ,} V=6
7QM = 274468500

S={6,6, 11,1 O, O, O, 0,} V=6
8 QM 674887656
S={6,6,11,10,0,0, 0 } V=6

HIS IS ALL! TOTAL ATTEMPTS = 37

Figure 5. : Eight solutions found by the. Monte Carlo program.
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NON-ZERO COMPONENTS OF VECTORS IN ‘MAXIMAL’ SOLUTION #1

Vi:vZ -1 ,v8e 1 w10 - 1 ,¥vi1-1 ,v13 | ,vi5=1 ,vi6e 1,Vl7 -1
vi9m 1 ,v20= 1 ,v21 = 1 ,v22 --1 ,¥v23 --1 ,v24= 1 ,v25 - 1 ,v26= 1
v27 --1 ,v29= 1 ,v32=-2 ,v33 --1 ,v52= 1 ,v55= 1

V2:v7=-2 ,v8B=2 ,v9 --1 ,¥v1 |--1 ,Vv12 --1 ,vi3= 1 ,vi4= 1 ,VIiS=-]
vVibm 1 ,vi7= 1 ,v18 --1 ,v19= 1 ,v22= 1 ,v23e 1 ,V25=2 ,v26 --1
V27 = 1 ,v28=1,v29= 1 ,v30= 1 ,v31= 1 ,v32 -1 ,v52=1,v54= 1

V3:v7 =9 , 809 v0a 3,v10--3 ,VI1w-3 ,vI3=-6,VvIS -6 ,vi6= 6
vi7= 3,v19- 17 ,v20= 30, v21 = 33 ,v22 --3 ,v23=-3 ,v25= 15

V26 -3 ,v27=-3 ,v29= 3 ,v30=3 ,v31= 9 ,v32=3 ,v33=-3,Vv52= 3
VS3 - 3

V4:v7 = <1506 ,v8 = 1311 ,v9w=-862 ,v10 - 1902 ,v1 |--1428 ,vi2= 626
vi3 --792 ,v14 --117 ,v15= S66 ,vi6= 2616 ,v17 --1428 ,v18= 1340
vi9= 1350 ,v20 --117 ,v21 --862 ,v22 = 1902 ,v23 --1428 ,v24= 1340
v25= 2220 , v26 --597 ,v27 = 148 ,v28 =-1902,v29 = 2142 ,v30 --626
v31l - 1190 ,v32 --952 ,v33 --1666 ,v52~ 714

V5:v51 - 1

V6: VS0 = 1

NON-ZERO COMPONENTS OF VECTORS IN * MAXIMAL® SOLUTION #3

Vi:vZz --1 ,v8=1 ,v10 --1 ,vi|--1 ,v12 --1 ,vi5a 1l ,vi7=2 ,vi8= 1
vi9e 1 ,v20= 1 ,v21 --1 ,v22=-2 ,V23= 1 ,v24 --1 ,Vv25 --1 ,v27 = 1
v28= 3 ,v29 --2 ,v30= 1 ,v31 -’1 ,v32 --1 ,v33= 1 ,v52= 1 ,v55=1

V2:v7 =-2 ,v8Ba 1 ,v3= 1 ,vio - 2 ,v11 -1 vi12=3 vi3=e 1 ,viS5a 1
viZ -1 ,vi8=1,v19 --1 ,v20=1 ,v2) --1 ,v22= 1 ,v23- 1 ,v24=1
v25 -1 ,v26 --1 ,v27 = 1 ,v28= 1 ,v29= 1 ,v30 --1 ,v31 --1 ,v32 --1
v33=2 ,v52= 1 ,v54= 1

V3: V7= 1 ,v8=4 ,v3=2 ,vi3a 1l ,vid4=-2 v15-2 ,Vi6w-2 ,v17 --6
v19 --36 ,v20 --35 ,v21 = 5 v22=-2 ,v23 --2 ,v24 =2 ,v25 --1 ,v26= 2
v27 --2 ,v28 --2 ,v29 = 2,v32--2, v33--2, v52 --2, v53 --2

V4: v7 = 2942 ,v8 =-3500,Vv9 --4436 ,v10 - 3154 ,v11 --2920 ,vi2= 45
vi3 = 1694 ,v14 --2876 ,v15 --4436 ,vi6= 4402 ,v17 -4792 ,vi8= 1293
v19 - 2006 , v20 --2876 , v21 - 4436 , v22 = 4402 , v23 - -3544 |, v24 = 669
v2$ --2318 ,v26= 3500 ,v27 = 3812 ,v28 = -5026,v29 = 4168 ,v30 --669
v33 --624 , v52 --624

[VS: v51 --1

V6: v50 --1

Figure 6. : Explicit vector components of four solutions.
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NON-ZERO COMPONENTS OF VECTORS IN * MAXIMAL" SOLUTION #S

‘:v7 -1 ,v8 --1 ,v9 --I ,v10 --1 ,vil- 1 ,vi2 --1 ,vi3a 1 ,Vv15S --|
vie=-2 ,v17 -1 ,v18 --1 ,vi9 a-1,v20m1,Vv23 --1 ,v24 = 1,V25 u-1
v26 -1 ,v27 -1 ,V28 -1 ,v29= 1 ,v30=1,v32= 1 ,vS2- 1 ,v5855=1

2:v7 =-1,v8m-2 ,v9--1 ,V10--2, V12- 1 ,v13 --1 ,vi4= 1 ,Vv15a-]
vié -1 ,v18 -1 ,v19 --1 ,v20- 1 ,v21 =1 ,v22 --1 ,v24 --1 ,v25= 1
v26 - 1 ,v27--1 ,v28=-1 ,V30 -1 ,v31 --1 ,v32= 1 ,v33= 1 ,v52= 1
V54 - 1

‘3:V7--1 ,vBe 4 V10 --8 ,¥v1 |--8 ,v12= 12, vi13=7 ,vidm 12, viS= 4
VI6 =12 ,v17 -8 ,viBm =4 ,vi9 =4 v20 & 20, v21 =-19 ,v22 --1, v23 =4
V2S--7 ,v26 -Al ,v27 = -4 ,v28=4 ,v29= 8,v30-4, v31--16, v32 ==
V33 -4 ,v52= 4 ,v53 = 4

'4:v7 = 2761 ,v8 = 2073 ,v9 --17 ,v10 --147 ,v11-4262 ,vi2= 2220
vi3e 2217 ,v1i4= 1S29 ,v1 S--17 ,vi6 --147 ,vi7 = 4S34 ,vi8~= 2764
vi9= 296S , v20= 2073 , v21 --17 , v22 --691 , v23 - 3990 , v24 = 2764
v2S --2489 , v26 --1801 , v27 - 289 , v28 - 419 , v29 - 4S34 , v30 --2492
V31 - S44 , V33 --544 | vS2 - -272

‘S:vSial

‘6: v50 =1

NON-ZERO COMPONENTS OF VECTORS IN * MAXIMAL' SOLUTION #7

Vi:v8=1 ,v10 --1 ,v11 -1 ,v12 --1 ,v13 --1 ,v14 --1 ,viS - 1 vi6= 1
Vi7=-1 vi8w 1 ,vi9w 1 Vv24a 1 ,v26= 1 ,v27 --1 ,v28 --1 ,v29 --2
V30 -1 ,v32=1,v33 -1 ,vS52= 1 ,v¥v55 - 1

V2:v7 m-2 ,v8 --1 ,v10 --1 ,v1[--3 ,v12= 1 ,vi3 = 1l ,vid= 1 ,vi5 -1
vl -1 ,v17 -1 ,v20= 1 ,v21 = 1 ,v22 --1 ,v23 --1 ,v24 --1 ,v25 - 1
v26 -1 ,v28=1 ,v30 --1 ,v31=-2 ,v32=1,v33 --| ,vS2- 1 ,v54=1

V3:v7 =15 ,v@= 24, vii- 18, vi2=6 ,v13=15 ,vide-6 ,v15S - 12

vl --6 ,vi7= 12, vi8= 18, vi9= 23 ,v20=-24 ,v21 = 16, v22= 6

V23 =6 ,v24 =6 ,v25 --21 ,v26--6, v27--18, v28- 6 ,v29=-6 ,v30 --6
v3lm 18, ,v33 = -6,v52=-6,Vv53 --6

V4av7 --2778 ,v8 = 6682 ,v9 --33684 ,v10 - 28188 ,vil1 --3715 ,vi2=-9615
vl3 --942 ,vld4 = 6682 ,vl S--31848 ,vi6=~ 31860 ,v17 -43 ,v18 =-9615
v19 = 3648 , v20 - 6682 , v21 = -26340 , v22 - 28188 , v23 = 1793 , v24 --5943
v2S= 2778 , v26 -4846 , v27 = 31848 , v28 --30024 , v29 = 43 , v30 = 7779
v31l --1836 , v32 = 3672 , v33 - 1836 , v52 = 1836

V5: v51 --1

V6: vSO --1

Figure 6.: (Continued)
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